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Abstract
Purpose of Review Forests play an essential role in conserving pollinating insects and supporting pollination services in 
mixed-use landscapes and are particularly important to species that require resources restricted to forests. However, some 
forests provide higher quality habitat for these organisms than others. The primary objectives of this article are to 1) review 
how pollinator communities are influenced by changes in forest structure, composition, and age, 2) explore how these pat-
terns differ between conifer and broadleaf forests, and 3) provide recommendations for managers interested in optimizing 
forest conditions for pollinating insects.
Recent Findings Although biodiversity generally increases as forests mature and become more structurally and compositionally 
complex, patterns exhibited by pollinating insects vary depending on forest type and prevailing disturbance regimes. For example, 
conifer forests can either sustain pollinator diversity comparable to open habitats or experience reduced pollinator diversity depending 
on the openness of the canopy. In broadleaf forests, pollinator diversity often increases with age (following the stem exclusion stage) 
and increasing tree diversity, and diversity in these areas can exceed what is observed in open habitats even under closed-canopy 
conditions. Such patterns likely reflect the importance of flowering broadleaf trees to pollinators, including many forest-dependent 
species, and suggest that optimal management practices for conserving pollinators differ between conifer and broadleaf forests.
Summary We conclude that: 1) the quality of forests to pollinating insects is a function of forest structure and composition 
as mediated by forest age and disturbance history and 2) best management practices need to be developed separately for con-
serving pollinators in conifer and broadleaf forests. Research aimed at better understanding the value of different broadleaf 
tree taxa to pollinators, especially forest-dependent species, is needed.

Keywords Bees · Early seral forests · Forest canopy · Forest succession · Mature forests · Nesting resources

Introduction

Recognition that forests are important to pollinating insects 
(hereafter ‘pollinators’) has been building for decades [1–5], 
and interest in this topic has surged over the past several 

years [6••, 7, 8•, 9••, 10]. Far from providing subopti-
mal conditions for these organisms as suggested by some 
authors, it is now clear that forests support a large fraction of 
pollinator diversity endemic to many regions [11••]. Forests 
not only play a key role in maintaining regional pollinator 
diversity but they also promote pollination in adjacent land 
uses including many crops [11••], sometimes with substan-
tial economic benefits [12, 13•].

To fully understand the value of forests to pollinators, 
it is first necessary to distinguish forest-dependent species 
from those that use forests opportunistically [14]. Forest-
dependent species require resources restricted to forests at 
some point during their life cycle. Although such resources 
often include the flowers of trees or other forest plants, they 
can also include other plant structures, such as leaf or stem 
material used for food (e.g., by lepidopteran larvae), and 
substrates or microhabitats used for nesting or breeding (e.g., 
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dead wood, hollow trunks, or tree cavities). By contrast, pol-
linators that are habitat generalists can persist in landscapes 
devoid of forests yet may still make use of forest resources 
to meet their life history needs.

Recent work suggests that approximately a third of bee 
species are associated with forests in the northeastern U.S. 
[9••]. Work from other regions indicates that extensive 
deforestation results in the replacement of forest-depend-
ent pollinators by habitat generalists or species favored by 
anthropogenic disturbances [15–19]. Moreover, beyond a 
certain level of forest loss, such ‘regime shifts’ are expected 
to be difficult to reverse even with major restoration efforts 
[11••]. Therefore, it is urgent to determine how much for-
est cover is needed to conserve forest-dependent pollina-
tors [7, 11••, 20, 21]. There is an equally important need 
to understand how the structure, composition, and age of 
forests affect pollinators.

As forest succession proceeds, forest structure and com-
position change and the canopy can, depending on tree com-
position, become an increasingly important source of flow-
ers and other resources for pollinators. Changes in structure 
with time depend largely on prevailing disturbance regimes 
which vary with region and forest type, topography, climate, 
human activity, among other factors [22, 23]. Whereas some 
mature forests are characterized by mostly closed canopies, 
others are not. More open structures occur in mature for-
ests when disturbances kill sufficient numbers of dominant 
and co-dominant trees [24, 25]. Changes in forest composi-
tion include the predictable succession of tree species (e.g., 
shade-tolerant taxa replacing shade-intolerant taxa) as well 
as pests, diseases, natural disturbances, and management 
activities that select for a subset of tree species. While it is 
clear that pollinators respond to structural and compositional 
changes in forests, as reviewed here, inconsistent findings 
among studies suggest that such effects vary with forest type. 
Most notably, open stand conditions appear to be particu-
larly important to pollinators when forests are dominated 
by trees that provide few floral resources [26, 27••, 28••].

The objectives of this article are to 1) provide a brief 
overview of global changes in forest cover, structure, com-
position, and age, 2) review how pollinator communities are 
affected by forest structure, composition, and age, 3) explore 
how these patterns may vary among forest types, particularly 
gymnosperm- vs. angiosperm-dominated forests (hereafter 
conifer vs. broadleaf, respectively), and 4) provide recom-
mendations for managers interested in optimizing forest 
conditions for pollinator conservation. Efforts to define the 
term ‘forest’ are challenged by the variability in forest struc-
ture and composition observed globally. Therefore, to be as 
inclusive as possible we use the term ‘forest’ to refer to any 
ecosystem consisting of arborescent woody plants, regard-
less of their size or spacing. We adopt a similarly broad defi-
nition of ‘pollinator’ to refer to any flower-visiting insect that 

has the potential to contribute to pollination. Although most 
of the literature on insect pollinators has focused on bees, 
non-bee insects can enhance pollination beyond what can 
be achieved by bees alone and are the primary pollinators 
of many plant species [5, 29]. Finally, this review aims to be 
global in coverage but we note that most recent research on 
these topics comes from work conducted in North America 
and Europe.

Global Changes in Forest Structure, 
Composition, and Age

Forests throughout the world continue to experience changes 
in structure, composition, and age, with important impli-
cations for biodiversity. Globally, forests encompass ~ 31% 
(~ 4.1 billion ha) of land area [30] with tropical forests rep-
resenting the largest proportion (45%), followed by boreal 
(27%), temperate (16%), and subtropical (11%) forests. The 
amount of forest has been declining globally although the 
rate of decline (net forest loss) has slowed to ~ 4.7 million ha 
 yr−1 [30]. This trend is influenced by many factors, including 
declines in deforestation rates in some countries and natural 
expansions of forests in others. Most recently, there have 
been several regional, national, and global initiatives to plant 
more trees, such as the The Trillion Tree Campaign which 
aims to plant one trillion trees worldwide as a nature-based 
solution to combat climate change [31].

While the loss of forests, such as through agricultural 
expansion [32], poses a major threat to global biodiversity, 
forest degradation, defined as the loss of key forest attributes 
that reduce the capacity of a forest to provide goods, ser-
vices, and biodiversity [33], is also of concern, particularly 
in tropical regions [34]. Forest degradation often occurs in 
addition to forest loss, but this is not always the case. In the 
U.S., for example, forest cover has remained relatively stable 
over the past century [35] but a variety of forces are acting to 
reshape the structure and composition of these forests. These 
include non-native species, climate change, urbanization, 
and expansion of the wildland-urban interface (i.e., where 
houses and other developments meet or mix with undevel-
oped natural areas) [36–38].

Globally, old forests tend to be concentrated in regions 
that are cold and dry or warm and wet, whereas those of 
intermediate ages span large climatic gradients [39]. In 
North America, forests in the southeastern U.S. and in parts 
of central Canada are relatively young, reflecting the effects 
of industrial forest practices in the southeastern U.S. and 
the frequency of natural disturbances in central Canada 
[40]. A recent inventory in the U.S. found 64% of the ~ 58.4 
million ha of forest managed by the USDA Forest Service 
were mature or old-growth [41]. Young forests (≤ 30 yrs 
old) comprise ~ 25% of forests in the U.S. whereas very old 
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forests (≥ 200 years old) comprise ~ 4% (calculations based 
on USDA Forest Service Forest Inventory and Analysis data, 
for all ownerships).

Climate changes driven by anthropogenic forces–includ-
ing warming and altered precipitation patterns–can have 
direct and indirect effects on forests. Warming alters the 
phenology of vegetation (e.g., the timing of flowering and 
leaf out) and competitive relationships among species [42] 
and influences functional diversity, which has been shown 
to affect the vigor, growth, and survival of trees in some for-
est types [43, 44]. Many indirect effects of climate change 
are mediated through changes in the frequency and sever-
ity of disturbances that shape forest ecosystems by driving 
changes in vegetation growth, mortality, regeneration, and 
recruitment. Globally, approximately 98 million ha of for-
est were impacted by wildfire in 2015 [30], with more than 
two-thirds occurring in Africa and South America. Insects, 
diseases, and severe weather events damaged ~ 40 million 
ha of forests in 2015 [30], mainly in temperate and boreal 
regions. In western North America, tens of millions of ha 
were impacted by bark beetle (Curculionidae: Scolytinae) 
outbreaks during 2000–2020 due, in part, to warming and 
drought with billions of trees killed [45]. Exotic, invasive 
insects and diseases have greatly altered the structure and 
composition of some forests and are a growing conserva-
tion concern [46]. Invasive tree diseases, including chestnut 
blight and Dutch elm disease in North America (caused by 
Cryphonectria parasitica and Ophiostoma ulmi, respec-
tively), have threatened the existence of entire tree genera. 
With climate change, novel forest ecosystems are becoming 
increasingly prevalent and characterized by forest condi-
tions, environmental drivers, and disturbance regimes with 
no or few past analogs [47]. Continued warming and changes 
in precipitation patterns are expected to amplify interac-
tions among forest disturbances. However, vulnerability of 
the world’s forests varies due to differences in biophysical 
conditions, disturbances, and local and regional variations 
in climate [48].

Humans play a significant role in determining the distri-
bution, structure, composition, and age of forests. Numer-
ous social and economic drivers influence how, when, and 
where forests are managed for goods and services, with each 
of these decisions having the potential to affect pollinator 
conservation. Seventy-three percent of the world’s forests 
are publicly owned, with the share of publicly owned forests 
declining globally since 1990 [20]. In the U.S., more than 
half of forest land is privately owned; most private owner-
ship occurs in the eastern U.S. with most western U.S. for-
ests publicly owned. Increases in landowner turnover rates, 
parcellation of forest properties, and forest fragmentation are 
important conservation concerns (due to habitat loss, among 
other factors) in the eastern U.S. and likely to intensify in 
the future [49]. Globally, tropical forests experienced the 

most fragmentation between 2000 and 2020. However, 75% 
of the world’s forests experienced a decrease in fragmenta-
tion between 2000 and 2020, including highly fragmented 
temperate and subtropical regions in northern Eurasia and 
southern China [50]. In the future, forest landowners and 
natural resource managers will be increasingly challenged to 
maintain forests and associated goods and services, includ-
ing pollination services, in the face of environmental and 
socioeconomic changes.

Forest Structure

Forest structure–the horizontal and vertical arrangement of 
both living and dead vegetation–plays an important role in 
determining the amount and distribution of floral resources 
and breeding substrates used by pollinators. Here, we 
address the following three topics: 1) benefits and drivers 
of canopy openness, 2) effects of the shrub layer, and 3) the 
availability and suitability of breeding substrates. Although 
we discuss the effects of forest structure and composition on 
pollinators separately here, it should be noted that neither 
can be fully understood in isolation and the relative impor-
tance of each can be hard to disentangle [51].

Open canopies have increased floral herb abundance and 
diversity in the understory [52] and can have microclimates 
(e.g., temperature and soil moisture) that improve nesting 
habitat and enhance foraging conditions for pollinators 
[53–55]. The amount and diversity of floral resources in for-
ests are highly linked to pollinator abundance and species 
richness [56, 57], including bees and wasps [58–62], flies  
[63], beetles [64], and butterflies [65]. Both natural distur-
bances and forest management activities can help maintain 
open canopies and enhance floral resource availability. The 
most common forest management treatments that increase 
canopy openness and floral resource availability in the 
understory include mechanized tree harvest and prescribed 
burning. Pollinator communities tend to respond positively 
to tree removal, especially in conifer forests where herba-
ceous floral diversity usually increases the first few years 
following thinning [27••, 66, 67]. For example, Davies et al. 
[68•] found that bee diversity and numbers of plant-bee 
interactions were greater in thinned versus unthinned pon-
derosa pine (Pinus ponderosa) stands in Colorado, U.S. For-
est thinning in this system resulted in enhanced canopy 
openness and floral abundance in the understory, which were 
correlated with native bee abundance and diversity [68•]. 
In Europe, maintaining open habitats within forests (e.g., 
glades and clearings) and thinning forest stands is recom-
mended to reverse recent declines in butterfly diversity [69].  
Although thinning tends to benefit herbaceous floral abun-
dance in the understory, thinning in some systems, such as 
tropical or temperate broadleaf forests, may reduce floral 
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resources for pollinators if it includes the removal of flower-
ing trees or shrubs [70, 71].

Fire also creates more open canopies and increases floral 
abundance and diversity [72–75]. Some studies have shown 
that floral resources increase in response to the more open 
conditions following low-severity burns in both conifer and 
broadleaf forests, and that this results in higher pollinator 
diversity [76, 77•]. However, benefits of prescribed fire 
to floral and pollinator diversity tend to decline over time, 
sometimes within just a few years [78•]. For example, Gelles 
et al. [76] found that the highest floral diversity occurred one 
year after prescribed fire in ponderosa pine forests in Colo-
rado whereas no difference in bee diversity was observed 
between burned and unburned stands after three years. In the 
U.S., a combination of mechanical thinning and prescribed 
fire has been shown in several studies to result in higher 
diversity of herbaceous plants and pollinators in temperate 
broadleaf and conifer forests [72, 77•, 79•, 80].

Both native and non-native species can form dense shrub 
layers that reduce the availability of flowers near the forest 
floor. Invasive non-native flowering plants can outcompete 
native plant species [81, 82] and may provide resources pri-
marily for generalist and/or exotic pollinator species [83, 
84]. Managing the shrub layer may help restore native plant 
and pollinator communities and their interactions [83, 85•, 
86] (Fig. 1 D, E). However, this may not be the best course of 
action for flowering native shrubs [78•] and there is a short-
age of research on the short and long-term consequences of 
removing invasive flowering species from forests [87–90].

In addition to floral resources, pollinators require nest-
ing and overwintering sites which vary by taxa. Most bee 
species are ground-nesters and generally prefer exposed, 
malleable, dry soils at warm microsites with high light 
availability [91, 92]. While some forest bees are known to 
nest beneath leaf litter [93], the amount of bare soil is often 
positively correlated with abundance of ground-nesting bees 
[92]. This relationship has rarely been studied in forests, 
but in the southeastern U.S. prescribed fire has been shown 
to favor ground-nesting bees in pine (Pinus spp.) forests, 
likely via increases in bare soil [94, 95•], and soil-nesting 
bees declined with increasing depth of duff in broadleaf and 
conifer forests [96]. This trend seems to extend to other for-
est types [97, 98]. It is likely that most disturbances that 
create patches of bare soil could benefit bees that nest below 
ground. For example, thinning of the forest canopy can also 
promote bare soil, immediately via ground disturbance dur-
ing harvesting and later through reduced litter deposition 
over time, and increase the amount of light reaching the for-
est floor with benefits to ground-nesting bees [55]. However, 
fire can compact soils which could limit the ability of bees to 
excavate nests [77•] and the extensive use of heavy (logging) 
equipment may have a similar effect [99], although this is 
not always the case [98].

Other pollinators, including many beetles (e.g., Cer-
ambycidae, Scarabaeidae, Mordellidae) and hover flies 
(Syrphidae) require decaying wood for larval develop-
ment, including that provided by tree hollows [100, 101]. 
While more structurally complex forests are hypothesized 
to increase nesting opportunities and larval feeding sites for 
pollinators [6••, 77•, 102, 103], relatively few studies have 
explicitly examined the effects of forest structure on nest-
ing resources for pollinators. Abundance of dead wood (i.e., 
snags, stumps, and coarse woody debris) has been repeat-
edly linked to increases in cavity-nesting bees across a wide 
range of global forest types [6••, 79•, 96, 97, 104–106]. This 
may also be true for hoverflies and saproxylic beetles which 
also benefit from structural mosaics, increased canopy cover, 
and the presence of old and decadent trees [105, 107, 108]. 
Although some disturbances (e.g., high-severity wildfire) 
might be expected to reduce the availability of dead wood, 
several studies have found that woody debris and nesting 
opportunities for bees increase after severe wildfires [66, 
79•, 109]. The effects of more exposed conditions on the 
suitability of breeding substrates for saproxylic pollinators 
probably vary among taxa. Although many beetle species 
that nest in dead wood benefit from sun exposure [110], more 
open conditions may negatively affect species dependent on 
wetter microhabitats, including many fly taxa [111–113]. 
More research is needed to clarify these relationships.

Forest Composition

In addition to defining which floral and nesting resources are 
available, the composition of forest vegetation also deter-
mines how such resources are distributed across space and 
time. For example, forest canopies can either represent zones 
of floral abundance or scarcity depending on the overstory 
tree community. Moreover, climatic adaptations can result 
in forest plant assemblages characterized by highly seasonal 
periods of blooming [17, 114]. Here, we review four topics 
of particular relevance to managers: 1) the relative value 
of forests dominated by conifers vs. broadleaf trees, 2) the 
relationship between pollinator diversity and tree diversity, 
3) the conservation value of plantation forests, and 4) the 
effects of non-native plants, insects, and pathogens on forest 
pollinators.

The first trees were gymnosperms and their descendants 
still dominate about 32% of global forest cover [115]. They 
remain particularly widespread at high latitudes and high 
elevations, as well as in regions experiencing frequent fire. 
Conifer forests are characterized by relatively low plant 
diversity, especially in the canopy, although some open 
fire-maintained forests (e.g., longleaf pine, Pinus palustris) 
have some of the highest understory plant diversity out-
side of the tropics, including many endemic species [116]. 
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Fig. 1  Pollinator diversity changes with forest age, often declining 
as young stands  (A) develop into dense stands  (B) during the stem 
exclusion phase [26]. Pollinator diversity can then increase as forests 
mature, especially if fire or other disturbances maintain open under-
stories (C) [26] or if floral resources are provided by the overstory 
trees [120]. Midstory thickets formed by invasive shrubs such as Chi-
nese privet (Ligustrum sinense) (D) can greatly reduce floral resource 

availability near the forest floor [85•]. Efforts to eradicate such plants 
benefit flowering plants in the understory (E) as well as pollinators 
[85•]. Plantation forests such as this Monterey pine (Pinus radiata) 
plantation in New Zealand (F) are less structurally and composition-
ally complex than native forests (G), with important implications for 
biodiversity (photos taken by Michael Ulyshen)
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By contrast, the canopies of broadleaf forests commonly 
consist of dozens to hundreds of tree species per ha [117], 
including both insect- and wind-pollinated taxa. The few 
comparisons of pollinator diversity between conifer- and 
broadleaf-dominated forests suggest diversity tends to be 
higher in broadleaf forests. For example, this was shown for 
butterflies in India [118], and, more recently, work from the 
southeastern U.S. (where both forest types occur naturally) 
found that bee diversity is negatively correlated with the 
amount of pine forest in the surrounding landscape [119] as 
well as the proportion of pine locally [120]. Such findings 
may reflect differences in pollen quality between conifer-
ous and broadleaf trees. Although a number of studies have 
reported conifer pollen on bees or in their nest provisions 
[121, 122••], this is typically in very small quantities [123] 
and may represent contamination rather than active collec-
tion [124]. Furthermore, other work suggests conifer pollen 
may be a less nutritious and less preferred resource than 
that of many angiosperm taxa [125]. Despite evidence that 
conifers provide less favorable floral resources to pollina-
tors than broadleaf trees, it is important to stress that the 
value of conifer forests is mediated by canopy openness. As 
discussed in the previous section, open conifer forests are 
characterized by abundant floral resources in the understory 
and support diverse pollinator assemblages [126]. Moreover, 
in regions where both open conifer forests and broadleaf 
forests occur together, such as the southeastern U.S., the two 
forest types support distinct pollinator communities [119], 
indicating that both are important to regional diversity.

The relationship between overstory tree diversity and 
pollinator diversity remains understudied. Several stud-
ies reported no strong relationship between tree diversity 
and the richness of cavity-nesting bees [62, 127]. However, 
few bee species were collected in those studies and more 
comprehensive sampling efforts suggest tree diversity may 
indeed be important to bee diversity. In England, for exam-
ple, the presence of flowering Acer pseudoplatanus greatly 
increased bee activity in the forest canopy [128•]. In for-
ests of Ohio and Indiana, U.S., Cunningham-Minnick and 
Crist [83] reported a positive correlation between spring bee 
diversity and the diversity of woody plants. Moreover, in the 
southeastern U.S., Traylor et al. [120] found bee diversity to 
be positively correlated with the number of insect-pollinated 
broadleaf tree species nearby. Similar patterns were reported 
for hoverflies in a beech (Fagus) forest in France [107]. 
Although this question has not, to our knowledge, been spe-
cifically tested for other groups of pollinating insects, the 
diversity of beetles generally increases with increasing tree 
species diversity [129] and this is also likely to be the case 
for Lepidoptera given their host specificity as larvae. For 
pollen-limited tree species, pollinator abundance and diver-
sity may be critical for maintaining fruit and seed set [130].

Planted forests cover ~ 294 million ha of which 131 
million ha (~ 3% of global forest cover) consist of planta-
tions focused on the production of goods (wood or fiber) 
or providing ecosystem services such as protection from 
desertification, wind, soil degradation, or other concerns 
[30]. Because the total area of plantation forests contin-
ues to increase, often replacing native forests or naturally 
treeless habitats, there is an urgent need to better under-
stand how they affect biodiversity [30, 131, 132]. Globally, 
the most widely planted tree genera are Pinus, Cunning-
hamia, Eucalyptus, Populus, and Acacia [133]. In some 
parts of the world, such as North and Central America, 
plantations consist mostly of native species (e.g., Pinus) 
whereas in other areas, such as South America and New 
Zealand, most plantations consist of introduced species 
(e.g., Eucalyptus, Pinus radiata) [30] (Fig. 1F). Despite 
supporting pollinators in some landscapes, there is agree-
ment among studies that intensively managed non-native 
plantations harvested on short rotations are typically of 
limited benefit to pollinators [134]. This is true even when 
the planted trees produce flowers likely to attract polli-
nators. For example, poor seed production observed in 
both Eucalyptus and Acacia plantations suggests inade-
quate flower visitation, possibly resulting from pesticides 
or cultivation practices that reduce foraging or nesting 
resources within and around plantations [135]. Moreover, 
as with any monoculture, the benefits of flowering planta-
tion trees are limited to the flowering period of that indi-
vidual species, which may be short-lived. Thus, it is criti-
cal to provide other sources of flowers nearby. This can 
include preserving semi-natural habitats and native trees 
[136–139], planting a mix of tree species [134], maintain-
ing unplanted open spaces [140], harvesting in ways that 
result in uneven-aged stands [141], and employing thin-
ning practices that increase the availability of flowers in 
the understory of forest plantations [142, 143].

The intentional or accidental introduction of non-native 
plant species has led to marked alterations of forest compo-
sition worldwide. In addition to the 44% of all plantation 
forests consisting of introduced species [30], many other 
non-native species of trees, shrubs, grasses, and herbs are 
naturalized or invasive. Furthermore, introduced insects 
and pathogens have caused strong changes in overstory tree 
composition, including the extirpation of mass-flowering 
trees (e.g., American chestnut, Castanea dentata) that were 
historically of great importance to pollinators [144]. While 
the effects of some introduced plants may be neutral or even 
positive [145, 146], others, such as certain woody shrubs, 
negatively affect native plants in the understory [147] and 
can pose a threat to entire forest ecosystems by preventing 
tree regeneration [85•]. Controlling such species is critical to 
restoring conditions for pollinators in invaded forests.



328 Current Forestry Reports (2024) 10:322–336

Forest Age

Forests undergo pronounced changes in both structure and 
composition as they age with a general trend toward greater 
complexity. As traditionally understood, there are four main 
stages of forest development [148]. These are the stand ini-
tiation stage, the stem exclusion stage when trees compete 
for space, the understory reinitiation stage when forest herbs 
and shrubs return to the understory, and the old growth stage 
when overstory trees begin to die. For the purposes of this 
review, it is helpful to add a fifth stage, marking the maturity 
and flowering of overstory trees, which occurs between the 
stem exclusion stage and the old growth stage. In addition 
to flowering forest trees and other plants, there is a prolif-
eration of nesting and breeding microhabitats, such as tree 
hollows and dead wood, as trees age, senesce, and die. In 
most forests, natural disturbances result in an uneven age 
structure including patches of early successional habitat at 
landscape scales.

Comparisons of pollinator diversity among forests of dif-
ferent ages suggest conifer- and broadleaf-dominated forests 
exhibit different patterns due to variation in both disturbance 
regimes and availability of resources within the forest can-
opy. In conifer systems managed with regular prescribed 
fire (e.g., every few years), pollinator diversity appears to be 
unrelated to forest age [28••, 149, but see 150]. For example, 
Dixon et al. [28••] found no significant difference in bee 
richness among restored pine savannas across a gradient of 
stand ages (5–15, 15–30, 20–50, 50–75, and 75–100 yrs) on 
the southeastern U.S. Coastal Plain that were burned at two-
year intervals. However, the same study [28••] and work 
by Hanula et al. [26] found bee diversity to be significantly 
lower in denser unburned pine stands compared to fire-main-
tained pine savannas. In Japan, Taki et al. [67] reported steep 
declines in bee richness with age in conifer plantations and 
Zitomer et al. [27••] reported similar results from northwest-
ern North America where bee diversity declined by almost 
50% for every five years since anthropogenic disturbance 
(i.e., clearcut harvest) in early successional, intensively man-
aged Douglas-fir (Pseudotsuga menziesii) stands. Together, 
these studies suggest that conifer forests are of limited value 
to pollinators unless overstory tree density is reduced by 
fire or other disturbances (Figs. 1 A-C, Fig. 2). They also 
lend support to the idea that conifer trees provide insuffi-
cient floral rewards within the canopy to compensate for 
shaded understories. It is possible that old conifer forests 
characterized by uneven-aged structure and more canopy 
openings provide value to pollinators [150], consistent with 
the U-shaped curve described by Hilmers et al. [151], but 
more research is needed to evaluate this idea.

Unlike conifer forests, the canopies of broadleaf forests 
become increasingly valuable sources of floral resources as 

trees age and begin to flower [122••]. Therefore, closed-can-
opy broadleaf forests can support high pollinator abundance 
and diversity, including many forest specialists. This may 
help explain why Taki et al. [67] reported higher pollinator 
diversity in mature broadleaf forests than in conifer forests 
of the same age in Japan. As in conifer forests, pollinator 
diversity declines from the open stand initiation stage to the 
stem exclusion stage when few flowers are available in the 
understory or canopy [67, 152•]. However, there is some 
support for the hypothesis that pollinator diversity increases 
as broadleaf trees mature and begin to produce flowers, and 
can reach levels exceeding what is observed in open habitats 
[26] (Fig. 2). In the southeastern U.S., Traylor et al. [120] 
reported that nearly half of the bee species examined were 
favored by older forests with a lower proportion of pine 

Fig. 2  Hypothesized relationships between pollinator diversity and 
forest age predict strong differences between conifer- and broadleaf-
dominated forests. In the absence of disturbances, pollinator diver-
sity in conifer forests declines rapidly with canopy closure and as the 
amount of light reaching the forest floor decreases [27••]. Reductions 
in conifer density–such as achieved with prescribed fire, thinning, or 
natural senescence–can restore pollinator diversity to levels compa-
rable to that observed in more open habitats [26, 28••, 150, 151]. 
Although pollinator diversity declines similarly with time in young 
broadleaf forests [152•], it can increase as broadleaf trees mature 
and begin to flower, sometimes exceeding the diversity observed in 
open habitats [26]. This subsequent increase likely results from both 
the production of flowers in the canopy as well as nesting or breed-
ing microhabitats essential to some forest-dependent pollinators. 
How pollinators may respond to thinning in broadleaf forests remains 
unknown. However, it is possible that reduced tree diversity and more 
xeric conditions may have a negative impact on some forest special-
ists. Given these differences, it is also hypothesized that a smaller 
proportion of pollinators in conifer forests are forest-dependent com-
pared to broadleaf forests
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(primarily Pinus taeda) in the canopy. Similar patterns are 
observed in tropical rainforests where diverse assemblages 
of stingless bees depend on old trees with cavities for nesting 
[153]. Thus, the relationship between pollinator diversity 
and forest age is hypothesized to differ between broadleaf 
and conifer forests (Fig. 2).

Another important consideration concerns changes in 
the composition of pollinator communities as forests age. 
Although little studied, pollinator composition can be 
expected to change strongly as forests transition from the 
youngest and most open stages to mature forests with flow-
ering overstory trees and microhabitats required by forest-
dependent species for breeding. While a considerable frac-
tion of bee species in conifer forests depend on tree-derived 
resources (e.g., dead wood or resin) for nesting [126], the 
fact that conifer pollen is of comparatively limited value 
[124, 125] suggests that fewer pollinator species are depend-
ent on conifer forests than on broadleaf forests. There is a 
strong need for research on changes in pollinator commu-
nity composition as forests age, particularly work aimed at 
distinguishing between forest-dependent species and habitat 
generalists.

The differences described above regarding effects of for-
est age in broadleaf versus conifer forests have important 
implications for managers. Based on the information cur-
rently available, a stronger case can be made for prescribed 
burning or mechanically thinning to improve pollinator habi-
tat in conifer forests as they age than in broadleaf forests. 
While thinning or burning broadleaf forests can be expected 
to increase floral resources near the ground, and this will 
likely favor many pollinator species, it is unclear how any 
associated changes in overstory tree diversity and composi-
tion may affect forest-dependent pollinators in these systems. 
Although a growing number of studies suggest the canopies 
of broadleaf forests are important to maintaining diverse pol-
linator assemblages, including forest-dependent species [10, 
122••, 154•], much more research in this area is needed to 
anticipate how changes to the canopy are likely to impact 
this fauna at different stages of succession.

Discussion

As we have shown, forest structure, composition, and age are 
highly interrelated and strongly influence the diversity and 
composition of pollinator assemblages. In many parts of the 
world, human activities are resulting in forests that bear little 
resemblance to historical conditions. Such changes can have 
negative outcomes for pollinators, particularly for forest spe-
cialists. For example, many countries in South America and 
Asia have implemented subsidies and other incentive pro-
grams for establishing forest plantations [155]. The displace-
ment of older and more diverse native forests by plantation 

monocultures of non-native tree species represent a loss of 
resources critical to native pollinator diversity. Other negative 
effects of human activities in forests include the alteration of 
historic disturbance regimes, such as fire exclusion, which 
has negative consequences for many plant species and pol-
linators that are adapted to disturbance. Fortunately, steps can 
be taken to help remedy the situation. Below we highlight 
some general recommendations for managers interested in 
improving conditions for pollinators in forested landscapes 
and provide suggestions for future research.

It is clear that the complexity of both forest structure and 
composition promotes insect diversity, including pollinators, 
with forest-dependent species benefiting the most. Most for-
ests naturally become more structurally and compositionally 
complex as they age, although plant diversity can peak at 
mid-successional stages [156], with some critical resources 
being largely restricted to older forests [157]. While some 
of these resources, like large hollow-bearing trees and dead 
wood, can be found in younger forests and occasionally in 
other land cover types, older forests provide the critical ben-
efit of ensuring temporal continuity in the availability of 
these resources. Thus, the conservation of old forests, where 
possible, will help ensure adequate resource availability for 
many sensitive species over time and space [158].

One characteristic typical of older forests is an uneven-
aged stand structure maintained by regular natural distur-
bances such as wind events, wildfires, and outbreaks of for-
est insects and diseases [157]. Such disturbances are critical 
for maintaining forest biodiversity [156], so management 
that permits or emulates such disturbances at historic levels 
should improve conditions for pollinators. For example, the 
value of mature pine forests in the southeastern U.S. to pol-
linators is largely a function of fire frequency. Forests that 
burn infrequently tend to have higher tree densities as well 
as thicker understories that have fewer flowering species and 
low pollinator abundance and diversity [26]. By contrast, 
frequently burned forests have greater floral resource avail-
ability and more pollinators near the forest floor [26, 28••]. 
Timber harvest can also benefit pollinators by creating areas 
of good forage. Even clearcutting can benefit forest-depend-
ent species provided there is suitable forest cover nearby 
[20]. Thus, it is important to ensure adequate availability of 
key resources throughout the landscape at appropriate tem-
poral and spatial scales. For example, because most stingless 
bee species in the tropics nest in large cavity-bearing trees 
[159, 160], which are more common in older forests, it is 
important to incorporate old forests in management plans 
for this group.

Forests at stand initiation, understory reinitiation, and old 
growth stages of forest dynamics [148] often provide the great-
est concentration of flowers within the herbaceous layer. Floral 
resources and pollinator diversity often decline from stand ini-
tiation to stem exclusion and will either remain low or increase 
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during understory reinitiation depending on the resources pro-
vided by the maturing trees in the canopy and on stand open-
ness [161]. Maintaining open conditions may be more critical 
for pollinators in conifer forests than in broadleaf forests which 
often include mass-flowering canopy trees. While it may be 
possible that managing for more open canopies will benefit 
pollinators in all forest types, it remains poorly understood 
how practices that favor certain tree species over others, such 
as selective harvests or prescribed fire, may affect pollinator 
diversity within the canopies of mixed broadleaf-dominated 
forests. Future research aimed at clarifying the importance 
of different overstory tree species to forest-dependent taxa, 
as well as their response to alternative management actions, 
would be beneficial. There is a particularly strong need for 
more pollinator research in broadleaf forests.

A guiding principle in forest management is to mimic 
the disturbance regime to which an ecosystem is adapted. 
In some cases, conifer forests commonly experience more 
frequent or more widespread disturbances than broadleaf 
forests, such as wildfire or insect outbreaks. Disturbances are 
also common in broadleaf forests but often result in local-
ized canopy gaps that arise from small-scale tree mortality 
events. Small clearings within regions extensively covered 
by broadleaf forests can be especially important to pollina-
tors [78•], especially during times of the year when floral 
resources within closed-canopy forests are lacking. It is pos-
sible that more widespread thinning operations in broadleaf 
forests could continue to provide adequate resources for 
forest-dependent species while also improving conditions 
for habitat generalists. However, this should not be based 
on patterns observed in conifer forests given the many dis-
similarities between these forest types (Fig. 2).

In plantations, incorporating native tree species and, 
when possible, planting a combination of tree species, can 
be expected to be of greater benefit to pollinators than mono-
cultures of non-native tree species. As with any other crop, 
the negative effects of plantations on pollinators can also be 
ameliorated by protecting patches of native forests or other 
semi-natural habitats at regular intervals across the land-
scape [139].

Conclusions

As forest loss and degradation continue throughout much of 
the world, there is an urgent need to understand and satisfy 
the resource requirements of species endemic to each region. 
Because pollinators are essential to global food security, it 
is in our best interest to protect them and the ecosystems 
upon which they depend. Although the abundance and diver-
sity of pollinators are declining in many parts of the world 
[162], including in some forests [163], steps can be taken 
to improve conditions for these organisms. It is particularly 

important to recognize that there is no substitute for semi-
natural areas, and it is imperative that an adequate amount 
of such areas is conserved if we are to minimize local losses 
of endemic species. While targets remain poorly defined 
[21], a number of studies suggest strong declines in forest-
dependent pollinators can be expected at < 20% native forest 
cover [15, 18, 19, 164] and that considerably more than that 
is needed to avoid declines in some taxa [20]. Such targets 
need to be developed separately for different regions and 
forest types and depending on conservation priorities.

It should be stressed that the amount of forest cover neces-
sary to support endemic pollinator diversity will depend on the 
quality of forests for pollinator foraging and nesting. Native 
forests can generally be expected to be of greater value to pol-
linators than plantations of non-native tree species. Further-
more, the value of native forests to pollinators can be reduced 
through alterations of historic disturbance regimes, addition of 
invasive species, removal of hollow, moribund, or otherwise 
unmarketable trees, elimination of dead wood, and other inter-
ventions that result in less structurally and compositionally 
complex systems. Thus, in addition to protecting adequate for-
est cover, managers should be mindful of forest quality when 
working to conserve native pollinators in forests.
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